

vPedal Listener Tray Icon

Browser in the Active Window

Javascript code and the events exposed

vPedal Javascript Browser API Programmer Notes

Programmer Notes:

The above Javascript page is included in the free API. The Browser API is necessary to give today’s

programmer with the utmost power to control the interactions between the vPedal and any internet

platform, including embedded devices.

The concept behind the API is very simple. Due to the limitation of various security programs and

browsers, a COM/ActiveX method was replaced with a much smarter alternative. Each browser in

Windows operates as a Window, whether it be Microsoft Edge, Internet Explorer, FireFox,

Chrome, Safari, Opera and all variants including the earlier Spartan version in Windows 10.

A challenge was presented to the programmer. How can

one solution control the active application’s web page

and actually fire a JavaScript event, allowing the

programmer to essentially – do anything?

The answer was developed via vPedal and its

developers and looks like this to Windows.

Essentially, the vPedal Listener Tray Icon is responsible for authenticating and allowing the vPedal to

operate. The Browser in the Active Window is automatically detected. When you enter any key into a

browser, whether it be a text box or any object, an event is triggered. For example if you type in “K”

into a text box, the object in focus would receive 3 events. onKeyDown, onKeyPress, and

onKeyUp, each with an event parameter passed with the ASCII Keycode of “K”, which is of course

Character 75. So therefore any Javascript programmer would know that they can have an event on

the HTML DOM element onKeyUp="alert(event.keyCode);"

So, you would expect to see:

Javascript was chosen as it is more universal than any other

scripting language. Despite the power of VBScript being

capable, it is not universal to all browsers or usable on

multiple platforms and devices, including mobile devices.

Now, obviously the onkeyUp event, using the event object

gives you the ability to run code. This is triggered by the user.

In this case, the vPedal must be the one to tell the browser.

Without any plugins, how can this be so?

The vPedal Javascript API must be able to communicate with

the active browser and simulate the above. Hence, on various events of the vPedal, the window

events are passed the active window. Take the following script for example. This script gets fired on

the <BODY> onkeyUp event.

Naturally in Windows it would be quite silly to rely on the K key to be a FootDown event. Therefore the

API has been programmed to specifically require a reasonably impossible combination of keys that

could not possibly interfere with either Windows or the Active Browser.

Therefore we rely on the alt, ctrl, and the shift key to be held at the same time “Virtually”. So the

following code is the listener, and executes various code on combinations of inbound key events sent

from the vPedal tray icon.

<SCRIPT type="text/javascript">

var isVpedalActive;

isVpedalActive=false; //Global Variable

function processkeycode(e) {

var rewinding=false;

var fastforwarding=false;

var myVar;

if (e.altKey==true && e.ctrlKey==true && e.shiftKey) {

if (e.keyCode==49){ExecuteCommand("1");};

if (e.keyCode==50){ExecuteCommand("10");};

if (e.keyCode==51){ExecuteCommand("2");};

if (e.keyCode==52){ExecuteCommand("20");};

if (e.keyCode==53){ExecuteCommand("3");};

if (e.keyCode==54){ExecuteCommand("30");};

if (e.keyCode==55){ExecuteCommand("4");};

return;

}

}

</SCRIPT>

Therefore this is the virtual listener that then goes and chooses what to do at certain events. This is

what happens. This code says if the user presses alt, ctrl, shift and 1-6 then run the respective

commands. The parameter to the ExecuteCommand is not relevant to the functioning, but it

distinguishes an action. Review the following code.

<SCRIPT>

function ExecuteCommand(command) {

switch (command) {

isVpedalActive=true;

setTimeout(function(){ isVpedalActive=false; }, 30000);

 case '1':

 document.getElementById('eventmessage').innerHTML='FOOTDOWN (Play) - code runs here';

 break;

 case '10':

document.getElementById('player_a').currentTime=document.getElementById('player_a').currentTim

e-1;

 break;

 case '2':

 document.getElementById('eventmessage').innerHTML='FOOTDOWNLEFT (Rewind) - code runs

here';

myVar=setInterval(function(){document.getElementById('player_a').currentTime=document.getEleme

ntById('player_a').currentTime-1;}, 250);

 break;

 case '20':

 rewinding=false;

 document.getElementById('eventmessage').innerHTML='FOOTUPLEFT (StopRewinding) - code

runs here';

 break;

 case '3':

 document.getElementById('eventmessage').innerHTML='FOOTDOWNRIGHT (FastForward) - code

runs here';

myVar=setInterval(function(){document.getElementById('player_a').currentTime=document.getEleme

ntById('player_a').currentTime+1;}, 250);

 break;

 case '30':

 document.getElementById('eventmessage').innerHTML='FOOTUPRIGHT (StopFastForwarding) -

code runs here';

 break;

 case '4':

 document.getElementById('eventmessage').innerHTML='The programmer is notified that the

vPedal is active and in use.';

myVar=setInterval(function(){document.getElementById('player_a').currentTime=document.getEleme

ntById('player_a').currentTime+1;}, 250);

 break;

 default:

 break;

 }

}

</SCRIPT>

This code captures the event and in this case, changes the contents of a Div. Also note: The

absense n the above example of receiving a message in 30 seconds, sets the global variable

isVpedalActive to False, otherwise True.

The above example is also written to do other media based events with player_a but for the purposes

of the programmer, the main exercise here is to understand that:

ALT CTRL SHIFT 1 ASC(49) FOOTDOWN (Play)

ALT CTRL SHIFT 2 ASC(50) FOOTUP (Stop)

ALT CTRL SHIFT 3 ASC(51) FOOTDOWNLEFT (SetRewindFlag)

ALT CTRL SHIFT 4 ASC(52) FOOTUPLEFT (StopRewindFlag)

ALT CTRL SHIFT 5 ASC(53) FOOTDOWNRIGHT (SetFastForwardFlag)

ALT CTRL SHIFT 6 ASC(54) FOOTUPRIGHT (StopFastForwardFlag)

ALT CTRL SHIFT 7 ASC(55)
HEARTBEAT – TO DETECT THE PEDAL
EXISTS

ISVPEDALACTIVE IS TRUE ON ANY EVENT AND IS SET TO WAIT 30 SECONDS UNTIL IT IS
FALSE, UNLESS IT IS PRESSED, THEN THE TIME STARTS AGAIN. THE PROGRAMMER COULD
THEREFORE SOUND AN ALARM IF THE PEDAL IS NOT USED FOR A CERTAIN PERIOD OF
TIME.

NOTE: To save the programmer, the API automatically runs a rewind and fast forward action time so
you don’t have to by pressing the relevant button at the set frequency defined when you right mouse
click the taskbar icon.

